


INTRODUCTION 
Bridging the Gap Between Language and 
Action: Buffaly’s Ontology-Based Approach 
to Controlling LLMs
The rapid advancement of large language models (LLMs) has revolutionized the field of 
artificial intelligence, enabling remarkable capabilities in natural language processing 
and understanding. However, harnessing the power of LLMs for practical applications 
presents significant challenges, particularly in controlling their behavior and bridging 
the gap between their language-based proficiency and the ability to execute concrete 
actions in the real world.

Buffaly is an implementation of OGAR (Ontology-Guided Augmented Retrieval), 
an AI-based data retrieval technique that redefines how organizations access and 
analyze complex data. Unlike conventional vector databases and retrieval-augmented 
generation (RAG) solutions, OGAR uses an ontology-based approach to provide 
hallucination-free, industry-specific insights, tailored for fields like healthcare, finance, 
and aerospace while keeping sensitive data from being sent to LLM providers such as 
OpenAI, where it might be compromised or used to train new models.

This white paper examines these challenges, exploring the inherent limitations of LLMs 
and presenting Buffaly as a promising framework for addressing these issues through 
a structured ontology and a flexible scripting language called ProtoScript. Buffaly’s 
ontology-based approach offers a transparent, controllable, and industry-specific 
solution that overcomes many of the shortcomings of traditional LLM implementations.

This paper aims to provide a comprehensive understanding of Buffaly’s approach to 
controlling LLMs and integrating them with action-oriented systems. It will explore the 
following key concepts:

The Difficulty of Controlling LLM Behavior: This section will elaborate on the inherent 
challenges of managing LLM outputs, examining their unpredictable nature and the risks 
associated with their potential for bias, inaccuracy, and malicious manipulation.

Bridging the Gap Between LLMs and Actions: This section will focus on the disconnect 
between LLMs’ language proficiency and their ability to execute actions in the real 



world. It will discuss Buffaly’s framework for translating language into actions, grounding 
LLM outputs in real-world contexts, and enabling dynamic action planning.

Buffaly’s Ontology and ProtoScript: This section will examine the role of Buffaly’s 
structured ontology and its scripting language, ProtoScript, in controlling LLM behavior 
and enabling action integration. It will discuss how these components provide a 
transparent and controllable framework for managing LLM reasoning processes and 
generating executable actions.

Buffaly as an Abstraction Layer: This section will examine how Buffaly provides an 
abstraction layer over meaning. This layer can be used to separate LLMs interpretation 
from function calling. This separation gives users greater control over how their 
applications understand language and how they interact with data.

By examining the challenges and opportunities associated with controlling LLMs and 
bridging the gap between language and action, this white paper aims to demonstrate 
the potential of Buffaly’s ontology-based approach in unlocking new possibilities for AI 
development and deployment.



The Need for Ontology-Based Approaches 
in AI

LLMs are powerful tools for natural language processing, but they have limitations 
that make them insufficient for complex data retrieval and AI agent tasks. Ontology-
based approaches, such as those implemented in Buffaly, address these limitations by 
providing a structured and flexible representation of knowledge that complements the 
capabilities of LLMs.

Here’s why ontology-based approaches are necessary:

LLMs Struggle with Data Retrieval: LLMs rely heavily on word embeddings and 
vector databases for information retrieval. This approach can lead to inaccuracies and 
limitations in handling complex queries and semantic relationships.

For example, in RAG-SQL tasks, traditional RAG methods based on word embeddings 
struggle to differentiate between semantically similar but distinct queries. They also 
have difficulty incorporating external data sources, such as real time APIs or databases.

LLMs Lack Incremental Learning: LLMs are typically batch-trained and cannot easily 
incorporate new knowledge without retraining the entire model. This makes them 
unsuitable for tasks requiring continuous learning and adaptation to new information.

Ontology-based approaches, on the other hand, support incremental learning by 
allowing new concepts and relationships to be added to the ontology without disrupting 
the existing knowledge base.

LLMs Have Limited Reasoning Abilities: While LLMs excel at pattern recognition 
and language generation, they struggle with complex reasoning tasks that require 
understanding cause and effect, hypothetical scenarios, and logical inferences.

Ontology-based approaches, especially those leveraging Buffaly’s capabilities, can 
address these limitations by representing knowledge in a way that supports logical 
reasoning and inference within a specific domain. For instance, Buffaly’s ontology can 
capture details like “the device used to work” and infer the deeper meaning, such as it 
no longer working, enabling more sophisticated reasoning.

Controlling LLM Behavior is Difficult: LLMs are often black boxes, making it challenging 



to control their behavior and ensure they act safely and reliably.

Ontology-based approaches offer a more transparent and controllable way to guide 
LLM actions by defining constraints and rules within the ontology. This makes it possible 
to create AI agents that are more predictable and aligned with human intentions.

Bridging the Gap Between LLMs and Actions: LLMs are primarily language models and 
lack the ability to directly interact with the real world or execute actions.

Ontology-based approaches, like Buffaly, can bridge this gap by providing a framework 
for representing actions and integrating them with LLM-generated insights. This enables 
the development of AI agents that can understand natural language instructions and 
translate them into meaningful actions.

By combining the strengths of LLMs with the structure and reasoning capabilities of 
ontology-based approaches, AI systems can overcome the limitations of LLMs and 
achieve greater accuracy, flexibility, and control in performing data retrieval and agent-
based tasks.

Limitations of LLMs for Data Retrieval

While LLMs can process natural language effectively, they struggle with complex data 
retrieval due to their reliance on word embeddings and vector databases. Here’s 
why this approach is limited and how ontology-based solutions offer a more robust 
alternative:

The Problem with Word Embeddings

LLMs use word embeddings, which represent words as vectors in a high-dimensional 
space. The idea is that words with similar meanings will have vectors close to each other 
in this space. This allows for semantic search, where you can retrieve information based 
on the meaning of a query rather than exact keyword matching.

However, word embeddings face several challenges:

•	 Contextual Ambiguity: Words can have multiple meanings depending on the 
context. Embedding-based methods might struggle to discern the appropriate 
meaning without sufficient contextual awareness.



•	 Nuanced Relationships: Capturing intricate connections between entities, 
such as cause and effect, temporal relationships, or hypothetical scenarios, 
is difficult with word embeddings alone. They primarily capture semantic 
similarity, not the richness of complex relationships.

•	 Limited Reasoning: Word embeddings lack the ability to reason logically about 
the data. They cannot infer new information or make deductions based on 
existing knowledge.

Challenges with Vector Databases

LLMs often use vector databases to store and retrieve large amounts of text data. 
These databases store the vector representations of text chunks, allowing for efficient 
semantic search. However, vector databases also face limitations:

•	 Chunk Size: The accuracy of retrieval often depends on the size of the text 
chunks used. Smaller chunks might lack sufficient context, while larger chunks 
can introduce noise and irrelevant information.

•	 Non-Specific Dimensions: The dimensions in the embedding space are not 
readily interpretable, making it difficult to understand why certain results are 
retrieved and others are not.

How Buffaly and Ontology-Based Solutions 
Address These Limitations

Buffaly, with its ontology-based approach and ProtoScript language, offers several 
advantages for data retrieval compared to traditional LLM and vector database methods:

Structured Knowledge Representation: Buffaly utilizes an ontology, a structured 
representation of knowledge that defines concepts, entities, relationships, and rules. 
This allows for a more precise and comprehensive understanding of the data.

Nuanced Querying: ProtoScript, Buffaly’s programming language, enables the creation 
of complex queries that go beyond simple keyword matching. It allows for querying 
based on relationships, hierarchies, and logical inferences.



Incremental Learning: Buffaly’s ontology can be incrementally updated with new 
knowledge without requiring complete retraining. This makes it adaptable to evolving 
data and use cases.

Transparency and Control: The ontology provides a transparent representation of 
the knowledge and reasoning processes, enabling greater control over the system’s 
behavior.

Buffaly as an Abstraction Layer
Buffaly is a system that provides an abstraction layer over meaning, separating LLM 
interpretation from function execution. This abstraction gives users greater control over 
how applications understand language and interact with data, ensuring more reliable 
and flexible behavior.

Buffaly achieves this separation by using a meaning representation layer that is 
independent of any specific LLM or function-calling mechanism. Instead of relying on 
the LLM’s interpretation alone, Buffaly utilizes a graph-based approach to represent 
knowledge. In this system, meaning is depicted as a network of concepts and 
relationships, which is used both to interpret language and to trigger actions.

This approach is notably more flexible and powerful than traditional natural language 
understanding methods that often rely on rigid, hand-crafted rules. Buffaly’s graph-
based model allows it to adapt to new information more easily. For instance, 
when encountering a new word, Buffaly can simply add it to its conceptual graph, 
enhancing its understanding and response capability without the need for extensive 
reprogramming.

How this Works in Practice:

Consider an application that allows users to query a database using natural language. 
Without Buffaly, the application might rely solely on an LLM to interpret the query and 
generate a corresponding SQL command. However, the LLM might not always generate 
a correct or efficient query due to its inherent limitations in precise function execution.

With Buffaly’s abstraction layer, the meaning of the user’s query is represented 
independently of the LLM’s interpretation. Buffaly’s graph-based reasoning engine 
then takes over, ensuring the generation of a more accurate and efficient SQL 



query. Furthermore, because the meaning is represented explicitly, the underlying 
implementation can be changed without impacting the rest of the system. For example, 
if the original query implementation was based on SQL, it could easily be replaced with 
an API call without disrupting the overall structure. Buffaly ensures that the meaning 
remains intact, regardless of how the action is executed.

Key Benefits of this Approach:

•	 Increased Accuracy: By separating LLM interpretation from function execution, 
Buffaly ensures more precise language understanding and query generation. 

•	 Increased Efficiency: Buffaly’s graph-based reasoning generates more 
optimized SQL queries compared to those created by LLMs alone. 

•	 Increased Flexibility: The abstraction layer allows for greater adaptability, 
enabling the application to support new domains or query types without 
being tightly bound to the limitations of the LLM. Furthermore, changes to the 
underlying implementations, such as switching from SQL to API calls, can be 
made seamlessly without affecting how the system understands the meaning.

Buffaly can serve as a bridge between LLMs and code execution, combining the broad 
natural language capabilities of LLMs with the precision and control of traditional 
programming languages. For example, Buffaly can translate natural language 
instructions into function calls or map abstract concepts in language to concrete data 
structures. This duality allows developers to harness the strengths of both LLMs and 
Buffaly’s graph-based reasoning for more controlled and efficient applications.

Buffaly provides a vital abstraction layer that separates LLM interpretation from function 
execution. This distinction gives users more control over how applications process 
language and interact with data, making the system more transparent and accurate. In 
contrast to the sometimes unreliable outputs of LLMs, which can be factually incorrect 
or offensive, Buffaly’s controlled approach ensures a higher level of precision and 
reliability. Moreover, because meaning is explicitly represented, developers have the 
flexibility to change the underlying implementation—such as replacing a SQL query with 
an API call—without affecting the rest of the system. 



Real-Time Information Retrieval with 
Buffaly

Buffaly excels at retrieving real-time information from external sources and integrating 
it into workflows for further execution by an LLM. One of its key advantages over using 
LLMs alone is that Buffaly is fully programmable. This programmability allows users to 
add new capabilities or modify existing ones, enabling them to tailor the system to their 
specific application needs. Buffaly also offers a layer of control and safety when building 
AI agents capable of real-time processing.

A prime example of this is RAG-SQL, which leverages a ontology metabase to write 
SQL queries, integrated with SQL workbench tools. When a user provides a directive in 
natural language, Buffaly searches a semantic database for similar directives. If a match 
is found, Buffaly suggests one of the associated queries. If no match is found, it uses 
word embeddings to identify the most similar directives and presents them as options. If 
a completely new query is required, Buffaly builds a prompt based on similar directives 
and associated queries, which is then sent to an LLM to generate a new SQL query. This 
approach improves both the accuracy and efficiency of query generation by separating 
meaning from execution and using Buffaly’s reasoning engine.

Another example is SemDB and CRM Integration, where Buffaly integrates its Semantic 
Database (SemDB) with a CRM system to automatically extract and update customer 
information from interactions like phone calls and emails. When a call ends or an email 
is received, the system sends the audio or text to SemDB. Using a combination of LLMs 
and data extractors, Buffaly analyzes the interaction, extracting relevant details such as 
names, phone numbers, and email addresses. This information is then used to update 
the CRM, adding missing details like an email address to a lead.

In the case of Real-Time Transcription and Analysis, Buffaly works with a transcription 
service to process live audio streams from phone calls. A WebSocket streams the 
audio data to a transcription service, which returns the transcript to Buffaly. Buffaly then 
uses data extractors to analyze the transcript, identifying key information such as the 
speaker’s name, phone number, or email address. This data is used to update the CRM 
or trigger other actions, all in real time.

Buffaly’s capabilities for real-time information retrieval are further enhanced by the 
following techniques:



•	 Semantic Search: Buffaly uses semantic search, often powered by word 
embeddings, to find related data or queries. This enables it to retrieve relevant 
information from its ontology or database, even when the input isn’t an exact 
match. 

•	 Few-Shot Learning: Buffaly can utilize few-shot learning by storing pairs of 
directives and queries in its semantic database. When a new query comes 
in, Buffaly performs a semantic search to retrieve relevant pairs and presents 
them as examples to the LLM. This allows the LLM to generate appropriate 
responses based on a minimal number of examples. 

•	 Data Extractors: Buffaly employs data extractors to pull specific information 
from unstructured data, such as transcripts or emails. These extractors can 
be programmed to recognize entities, identify patterns, or answer specific 
semantic questions. The extracted data is then used to update databases, 
trigger actions, or provide context to LLMs.

This level of flexibility makes Buffaly particularly effective in handling complex real-time 
scenarios, especially where traditional Retrieval-Augmented Generation (RAG) systems 
might struggle. Its programmable nature allows it to be adapted to various domains and 
use cases, making it a versatile and powerful tool for real-time applications.

Overcoming the Incremental Learning 
Limitations of LLMs with Buffaly and 
Ontology-Based Solutions

LLMs face a significant hurdle when it comes to incremental learning. Once trained, 
they struggle to incorporate new knowledge without a computationally expensive and 
time-consuming retraining process. This limitation stems from their architecture and 
training methodology, which contrasts sharply with the dynamic and adaptive nature of 
human learning.

Challenges with Incremental Learning in LLMs

Traditional LLMs are typically trained on massive static datasets. Adding new 
information necessitates retraining the entire model on the combined old and new 
data. This process is:



•	 Resource Intensive: Retraining demands significant computational power, time, 
and access to large datasets.

•	 Prone to Catastrophic Forgetting: Introducing new information can disrupt 
existing knowledge, causing the model to “forget” previously learned patterns. 

•	 Impractical for Dynamic Environments: In real-world scenarios where data 
constantly evolves, frequent retraining is not feasible.

Solutions with Buffaly and Ontology-Based Approaches

Buffaly, employing an ontology-based approach and leveraging the power of 
ProtoScript, offers a more flexible and adaptable solution to incremental learning:

Structured Knowledge Representation: Buffaly’s ontology represents knowledge 
in a structured and modular manner, enabling the addition of new concepts and 
relationships without requiring a complete model overhaul. This modular structure 
facilitates the isolation of new information, minimizing the risk of disrupting existing 
knowledge.

ProtoScript for Dynamic Updates: ProtoScript, Buffaly’s programming language, 
provides mechanisms for dynamically updating the ontology with new information. This 
allows for incremental learning without the need for complete retraining, enabling the 
system to adapt to evolving data and changing environments.

Targeted Learning: Buffaly’s architecture allows for focused learning within specific 
sub-graphs of the ontology. This targeted approach further reduces the impact of new 
information on unrelated parts of the knowledge base, promoting more efficient and 
stable learning.

Learning from Few Examples: Buffaly leverages its graph structure to identify and 
utilize covarying properties between inputs and outputs, allowing it to learn new 
concepts and relationships from limited examples. This contrasts with LLMs, which 
typically require vast amounts of data for effective learning.

LLMs Have Limited Reasoning Abilities

While LLMs excel at tasks involving language generation, they often struggle with 
complex reasoning and logical deduction, especially when faced with real-world 



situations requiring more than pattern recognition. This limitation arises because they 
rely on statistical correlations learned from large datasets, rather than employing explicit 
knowledge representation and reasoning mechanisms.

LLMs’ Struggle with Reasoning

Lack of Explicit Knowledge: LLMs store knowledge implicitly in their network 
parameters, which makes it difficult to represent and reason about specific facts and 
relationships in a clear, structured way. This implicit nature hinders their ability to 
perform logical inference or handle symbolic manipulation effectively.

Buffaly’s Ontology-Based Reasoning

Buffaly, utilizing a structured ontology and the expressive power of ProtoScript, offers a 
more robust and controllable approach to reasoning in AI systems. The ontology allows 
for the explicit representation of knowledge, enabling the system to reason about facts, 
relationships, and rules in a more logical and transparent manner.

•	 Explicit Knowledge Representation: Buffaly employs an ontology to define 
concepts, entities, and relationships in a clear and structured way. This 
explicit representation allows for logical reasoning based on defined rules 
and constraints, moving beyond statistical correlations to more symbolic and 
deductive reasoning.

•	 Graph-Based Inference: ProtoScript enables the creation of rules and 
constraints within the ontology. These rules can be used to infer new 
information or make deductions based on existing knowledge, enhancing the 
system’s reasoning capabilities.

•	 Handling Hypothetical Scenarios: The ontology’s structure allows for 
the representation of hypothetical situations and potential outcomes. By 
manipulating entities and relationships within the ontology, Buffaly can explore 
the consequences of different actions or scenarios, facilitating a form of “what-
if” analysis and reasoning about possibilities.

•	 Understanding User Intent: In natural language understanding, an ontology 
representing user intentions and goals can be used to interpret ambiguous 
requests or resolve pronoun references based on the context of the 
conversation. ProtoScript can define rules for disambiguation and intention 
recognition, enabling more accurate and relevant responses.



ProtoScript Enables Flexible Reasoning

ProtoScript plays a crucial role in enabling Buffaly’s reasoning capabilities:

Defining Rules and Constraints: ProtoScript allows users to define the rules and 
constraints that govern the system’s reasoning processes. This enables the encoding 
of domain-specific knowledge and expert heuristics, enhancing the accuracy and 
relevance of the system’s deductions.

Manipulating Entities and Relationships: ProtoScript provides mechanisms for creating, 
updating, and querying entities and relationships within the ontology. This allows 
for the dynamic exploration of different scenarios and the reasoning about potential 
consequences of actions or changes within the knowledge base.

Integrating External Data Sources: ProtoScript facilitates the integration of external 
data sources into the ontology, enriching the knowledge base and expanding the scope 
of the system’s reasoning capabilities.

Buffaly’s approach, combining a structured ontology with the power of ProtoScript, 
offers a more robust and adaptable alternative to LLMs for tasks requiring reasoning 
and logical deduction. It provides a framework for building AI systems that are not just 
good at pattern recognition but also capable of understanding and reasoning about the 
world in a more nuanced and human-like way.

Real World Examples 
Real-World Example: In practical applications, Buffaly addresses the limitations inherent 
in word embedding-based models, particularly with semantic clustering and inference. 
Consider two similar user problem statements: “Receiving Too Many Test Kits” and 
“Receiving Test Kits.” Using standard word embeddings, these two phrases would 
cluster closely because they share many common terms. However, in practice, the 
meaning behind these phrases is quite different. “Receiving Too Many Test Kits” implies 
an issue (over-supply), while “Receiving Test Kits” is neutral and lacks the context of an 
issue.

In a more accurate understanding, “Receiving Too Many Test Kits” should be more 



semantically aligned with a query like “Cancel Test Kits,” as both relate to addressing an 
issue with the supply of kits. This is where Buffaly’s ontology-based approach excels. 
Buffaly’s ability to make inferences at a semantic level allows it to align these concepts 
more precisely. Even though the words in “Receiving Too Many Test Kits” and “Receiving 
Test Kits” are similar, Buffaly can distinguish between their meanings based on context.

Additionally, words like “no” and “more” can drastically change the meaning of similar 
phrases. For example, “wants more test kits” and “wants no test kits” are vastly different 
in meaning, yet word embeddings might group them closely because they share 
common terms like “wants” and “test kits.” In this case, Buffaly can account for the 
nuanced differences in meaning by representing these phrases in a more structured 
and contextual way, which word embedding approaches alone cannot achieve.

Diagramming the Scenario:

1.	 Standard Word Embedding-Based Clustering:
•	 Cluster A: [“Receiving Too Many Test Kits”, “Receiving Test Kits”] 

(Word embeddings see these as semantically similar due to shared terms 
like “Receiving” and “Test Kits”)

2.	 Contextual Misalignment (Word Embedding Limitation):
•	 Even though “Receiving Too Many Test Kits” implies an issue and 

“Receiving Test Kits” does not, word embeddings treat these as close 
concepts without accounting for the deeper meaning (i.e., “too many” 
indicates a problem).

•	 Similarly, phrases like “wants more test kits” and “wants no test kits” 
would be treated similarly by word embeddings, despite their clear 
difference in intent.

3.	 Buffaly’s Inference-Based Approach:
•	 New Alignment: Buffaly leverages explicit knowledge and contextual 

rules from its ontology to infer that “Receiving Too Many Test Kits” implies 
corrective action, which can be inferred as “Cancel Test Kits.” This moves 
“Receiving Too Many Test Kits” away from “Receiving Test Kits” and closer 
to actions like “Cancel Test Kits” in the conceptual space.

•	 Cluster B: [“Receiving Too Many Test Kits”, “Cancel Test Kits”] 
(Buffaly’s inference places these together based on the understanding 
that an excess of test kits logically leads to cancellation).

•	 Additionally, Buffaly would distinguish between “wants more test kits” 
and “wants no test kits” based on its understanding of the words “more” 
and “no,” ensuring that their distinct meanings are captured.



This example highlights the limitations of using word embeddings alone to understand 
meaning, as they often overlook contextual differences between phrases. Buffaly’s 
ontology-based approach, which combines semantic inference with word embeddings, 
provides a more nuanced and robust way to understand language and make logical 
deductions. By representing meaning in a structured, context-aware framework, Buffaly 
offers a more sophisticated alternative to traditional word embedding-based models for 
natural language understanding.

Real-World Example: When answering a question like “Does the device turn on?” 
different responses can convey vastly different meanings despite similar wording. 
Possible answers include “It does [turn on],” “It used to turn on,” “It is turning on,” “It had 
been turning on,” and “It has been turning on.” While these responses share common 
elements such as “turn on,” their actual meanings differ significantly, especially when 
considering the temporal aspects and the current functionality of the device.

Word Embedding Limitation: 
In word embedding-based models, phrases like “It has been turning on” and “It had 
been turning on” are likely to be clustered closely together because they share similar 
wording, particularly the verbs “has” and “had,” and the phrase “turning on.” However, 
their meanings are quite different: “It has been turning on” implies recent or ongoing 
functionality, while “It had been turning on” refers to a past state that no longer holds. 
Word embeddings treat these phrases similarly, which leads to incorrect conclusions.

Additionally, word embeddings would likely treat “It is turning on” and “It used to 
turn on” as part of the same cluster since both involve the concept of the device’s 
functionality. However, “It is turning on” suggests a current state of activation, while “It 
used to turn on” implies the device no longer works. The nuances of these differences 
are lost when word embeddings group them together based on shared terms.

Lastly, “It does [turn on]” would often be placed in a separate cluster because it lacks 
the explicit “turning on” phrase, even though it still serves as an implicit confirmation of 
functionality. This separation does not align with the actual meaning, as “It does [turn 
on]” should be treated as an affirmative response akin to “It is turning on” or “It has been 
turning on.”



Buffaly’s Inference-Based Approach: 
Buffaly, leveraging its ontology-based reasoning, is able to differentiate these responses 
more accurately. By explicitly recognizing temporal and contextual cues, Buffaly 
can place these responses into clusters that more accurately reflect their intended 
meanings.

Diagramming the Scenario:

1.	 Word Embedding-Based Clustering (Incorrect Alignment):
•	 Cluster A: [“It has been turning on”, “It had been turning on”] 

(Word embeddings treat these similarly because of shared phrases like 
“turning on,” even though one implies recent functionality and the other 
refers to a past state that no longer holds.)

•	 Cluster B: [“It is turning on”, “It used to turn on”] 
(Word embeddings place these together based on the shared concept 
of the device’s activation, but their meanings differ dramatically — one 
implies current functionality and the other implies that the device no 
longer works.)

•	 Cluster C: [“It does [turn on]”] 
(Because this phrase lacks the explicit “turning on” phrase, word 
embeddings would often treat it as a separate response, even though it 
is still an affirmative answer to the question.)

2.	 Buffaly’s Inference-Based Clustering (Correct Alignment): 
Affirmative/“Yes”-Equivalent Cluster: 
Buffaly recognizes that responses like “It is turning on,” “It has been turning 
on,” and “It does [turn on]” are all affirmative in nature and indicate that the 
device is either currently functioning or has been functioning recently:

•	 Cluster A: [“It is turning on”, “It has been turning on”, “It does [turn on]”] 
(Buffaly groups these based on their shared meaning that the device 
is functional, either now or in the recent past, despite differences in 
phrasing.)

3.	 Negative/“No”-Equivalent Cluster: 
Responses like “It used to turn on” and “It had been turning on” are both closer 
to a “no” answer, as they imply that the device is no longer functional:

•	 Cluster B: [“It used to turn on”, “It had been turning on”] 
(Buffaly correctly groups these together, understanding that both 
indicate the device is not operational anymore, even though the word 
embeddings might miss the subtle difference between “has” and “had.”) 



Semantic Interpretation:

•	 Affirmative/“Yes”-Equivalent Responses:
•	 “It is turning on” — The device is currently in the process of activating.
•	 “It has been turning on” — The device has recently been turning on, 

suggesting it is likely functional.
•	 “It does [turn on]” — Though lacking the explicit “turning on” phrase, this 

is still an affirmative answer implying that the device works.
•	 These responses all provide a clear “yes” answer to the question “Does the 

device turn on?” and should be clustered together.
•	 Negative/“No”-Equivalent Responses:

•	 “It used to turn on” — The device worked in the past but no longer 
functions.

•	 “It had been turning on” — The device was operational at some point in 
the past, but this is no longer the case.

•	 These responses are closer to “no,” as they indicate that the device is no 
longer turning on.

Conclusion: 
While word embeddings cluster these responses based on shared terms like “turning 
on” or similar verb forms (“has,” “had”), Buffaly understands the contextual and temporal 
differences between the phrases. Buffaly correctly distinguishes between affirmative 
answers (“It is turning on,” “It has been turning on,” “It does [turn on]”) and negative 
answers (“It used to turn on,” “It had been turning on”), clustering them based on their 
actual meanings rather than surface-level similarities. This highlights the power of 
ontology-based reasoning in accurately understanding language nuances, which word 
embeddings alone cannot achieve.



Challenges in Controlling LLM Behavior and 
Buffaly’s Approach
Controlling the behavior of LLMs is a major challenge in AI development. Their reliance 
on statistical patterns learned from massive datasets makes it difficult to predict and 
direct their output in a precise and reliable manner. This lack of control can lead to 
undesirable outcomes, such as generating biased or inappropriate content or failing 
to align with user intentions. Buffaly’s ontology-based approach, using ProtoScript, 
provides a more controlled and transparent framework for managing LLM behavior, 
making it possible to audit, refine, and establish control over the LLM’s outputs.

Difficulties in Controlling LLMs:

•	 Black-Box Nature: LLMs operate as complex black boxes, making it hard to 
understand the reasoning behind their outputs or correct biases. This opacity 
complicates efforts to control behavior or ensure alignment with ethical 
standards. 

•	 Sensitivity to Input Phrasing: LLMs can produce drastically different responses 
based on subtle variations in input phrasing. This unpredictability makes it 
challenging to consistently achieve desired outputs. 

•	 Susceptibility to Prompt Injection Attacks: Carefully crafted input prompts 
can manipulate LLMs, potentially leading to harmful content generation, 
underscoring the need for strong control mechanisms. 

•	 Limited Ability to Incorporate External Knowledge: LLMs often struggle to 
integrate external knowledge, making them less adaptable to new domains or 
tasks that require specialized information.

Buffaly’s Ontology-Based Control

Buffaly offers a structured and programmable solution to address these issues. Through 
an explicit knowledge representation, Buffaly’s ontology defines concepts, relationships, 
and rules transparently, making it easier to audit and refine LLM behavior. This explicit 
framework provides developers with control over the LLM’s outputs, ensuring they 
adhere to desired guidelines and reduce the risk of undesirable content generation.

By serving as an abstraction layer, Buffaly separates LLM interpretation from function 



execution, making it easier to audit the LLM’s decision-making processes, guide 
reasoning paths, and refine behavior based on external constraints. The use of 
ProtoScript allows developers to define clear constraints and reasoning rules, ensuring 
that outputs remain within acceptable bounds while also integrating external knowledge 
sources to refine decision-making.

ProtoScript’s Role in Controlling LLM Behavior:

•	 Defining Output Constraints: ProtoScript allows developers to establish rules 
that ensure LLM outputs are precise and aligned with task-specific constraints, 
preventing irrelevant or harmful content generation. 

•	 Guiding Reasoning Paths: Developers can influence the LLM’s decision-
making process by using ProtoScript to create rules that guide reasoning and 
ensure consideration of relevant information.

Buffaly as an Interface Between LLMs and Code 
 
Buffaly acts as an interface between LLMs and code, leveraging LLMs for natural 
language understanding while maintaining precise control over execution. This interface 
ensures that LLM outputs align with specific tasks and goals, allowing developers to 
refine and control the system’s behavior in a reliable, transparent way.

By combining Buffaly’s structured ontology with ProtoScript, AI systems can audit, 
control, and refine LLM behavior more effectively, leading to more predictable and 
aligned outcomes. Buffaly provides the tools to mitigate the risks inherent in LLMs, 
offering a robust framework for real-world applications.



Bridging the Gap Between LLMs and 
Actions with Buffaly

Large language models (LLMs) excel at language-based tasks, but their ability to interact 
with the real world and take concrete actions remains limited. This disconnect arises 
from their focus on language processing rather than understanding and executing 
actions within a dynamic environment. Buffaly aims to bridge this gap by providing a 
framework for integrating LLMs with action-oriented systems, leveraging the strengths 
of both approaches to create more powerful and practical AI applications.

LLMs’ Limitations in Action Execution

•	 Abstract Nature of Language: LLMs primarily operate within the realm of 
language, manipulating words and symbols without a direct connection to 
the physical world or the ability to perform actions within it. This abstraction 
limits their applicability in scenarios that require concrete interactions, such as 
controlling a robot or interacting with a software application.

•	 Lack of Grounding in the Real World: LLMs typically lack a grounded 
understanding of the real world and the consequences of actions within it. They 
might generate instructions or plans that are logically sound but practically 
infeasible or even dangerous if executed without considering real-world 
constraints and limitations.

•	 Inability to Handle Dynamic Environments: LLMs struggle to adapt to 
dynamic environments where conditions change rapidly and require real-time 
adjustments to plans and actions. Their static knowledge base and limited 
ability to process real-time sensory information hinder their effectiveness in 
such scenarios.

Buffaly’s Approach to Action Integration

Buffaly addresses these limitations by providing a framework for connecting LLMs to 
action execution systems, allowing them to:

•	 Translate Language into Actions: Buffaly utilizes its ontology and ProtoScript 
to map natural language instructions or plans generated by LLMs into concrete 
actions that can be executed by external systems or agents. This translation 
process involves resolving ambiguities, grounding concepts in the real world, 



and generating executable commands or scripts.

•	 Ground LLM Outputs in the Real World: Buffaly grounds LLM outputs in the 
real world by integrating with databases, APIs, and other systems that provide 
real-time information about the environment. This grounding allows the system 
to validate the feasibility of LLM-generated plans, identify potential conflicts or 
risks, and adjust actions accordingly.

•	 Enable Dynamic Action Planning: Buffaly supports dynamic action planning by 
incorporating feedback from the environment and adjusting plans in real-time 
based on changing conditions. This adaptability enables the system to handle 
unforeseen events and to execute actions effectively even in complex and 
unpredictable environments.

ProtoScript’s Role in Action Integration

ProtoScript plays a crucial role in bridging the gap between LLMs and actions by:

•	 Defining Actionable Concepts: ProtoScript allows developers to define 
concepts within the ontology that represent actionable entities and processes 
in the real world. This includes specifying the parameters, preconditions, and 
effects of actions, providing a structured representation that LLMs can use to 
reason about and generate action plans.

•	 Creating Action Execution Mechanisms: ProtoScript enables the creation of 
procedures and functions that translate high-level action plans generated by 
LLMs into executable commands for specific systems or agents. This includes 
handling the details of communication protocols, data formats, and error 
handling, ensuring reliable and robust action execution

By providing a framework for connecting LLMs to action execution systems, Buffaly 
allows for the creation of AI applications that can not only understand language but 
also act upon that understanding in a meaningful and effective way. This integration 
unlocks new possibilities for AI to impact the real world and solve practical problems in 
various domains.



Buffaly’s Implementation of Ontology 
Guided Augmented Retrieval 

Prototypes: Abstraction, Isolation, and Meaning Representation

Abstraction and Isolation

Prototypes, ProtoScript, and the ontology provide a level of abstraction that 
separates LLMs from direct control over specific functions. Buffaly uses a graph-
based approach where knowledge is represented in the form of prototypes, which are 
programmatic structures embodying concepts and relationships. ProtoScript, a C#-
based programming language, simplifies the creation and manipulation of these graph 
structures.

This abstraction allows LLMs to focus on natural language processing and semantic 
understanding, while the ontology handles the execution of specific actions. For 
example, when a user requests “show all users created today,” the LLM translates 
this into a semantic representation. The ontology then utilizes predefined transforms 
to generate the appropriate SQL query: “select * from Users where DateCreated > 
dateadd(day, -1, getdate()).”

The ontology isolates the LLM from SQL syntax and database interactions, allowing it 
to operate without direct control over the called functions. This separation enhances 
modularity and flexibility, making it easy to incorporate new functionalities without 
modifying the LLM itself.

Representing and Understanding Meaning

The ontology and prototypes serve as a comprehensive interface and mechanism 
for representing and understanding meaning. The ontology stores knowledge like a 
grammar or state machine, representing:

•	 Facts: Barack Obama was President.
•	 Code: C#, HTML, ProtoScript.
•	 Relationships: Between different entities and concepts.

Prototypes offer a universal way to represent and manipulate information within 
these graphs. This enables Buffaly to handle various operations, allowing the system to 
reason about knowledge in a standardized way.



The process of representing meaning involves mapping lexemes (strings) to 
sememes (units of meaning). For example, the lexeme “buffalo” can map to different 
sememes: BuffaloCity, BuffaloAnimal, or BuffaloAction. Prototypes implement these 
sememes and their relationships, providing structured knowledge storage.

The ontology enhances Buffaly’s ability to capture nuanced relationships. In a CRM 
scenario, it can represent relationships between leads, accounts, and interactions. 
For example, it can answer “how many patient calls did Natalia make yesterday?” 
by translating it into precise SQL queries. The ontology also handles timeframes, 
hypothetical scenarios, and cause-and-effect relationships for deeper language 
understanding.

Prototype Data Structure

Here are some key points about Prototypes:

•	 Purpose: Prototypes were developed to provide a more efficient and adaptable 
data structure for AI tasks, surpassing traditional formats like JSON. The design 
prioritizes:

•	 Scalability: By using integers as the core of the Prototype structure, they 
offer improved performance and can efficiently handle large datasets.

•	 Flexibility: Prototypes are highly versatile and can represent a wide 
variety of data types, ranging from simple properties and collections to 
more complex relationships. They are adaptable to the specific needs of 
AI projects, supporting a wide range of data types including code, natural 
language, and even abstract ideas.

•	 Serialization: Prototypes are designed to be easily serialized to and from 
databases or JSON, making them highly practical for storage and data transfer. 
This flexibility allows seamless integration with existing data infrastructures and 
makes it easier to exchange data between systems. Their ability to transform 
into JSON or other database-friendly formats adds to their scalability and 
usability in real-world applications.

•	 Basic Structure: Prototypes have a straightforward yet powerful structure:
•	 Name: Each Prototype is identified by a name, functioning similarly to a 

class or object in traditional programming, and is represented as a string.
•	 ID: A unique integer ID is assigned to each Prototype, enabling fast 

internal processing and efficient referencing across large datasets.
•	 Properties and Collections: Prototypes contain properties, akin to fields 

in a class, and can manage collections, which are essentially lists of other 
Prototypes. This allows Prototypes to represent complex, hierarchical 
data structures with ease.



•	 Versatility in Data Representation: Prototypes can represent various types 
of data, from structured elements like code to unstructured content such as 
natural language and conceptual ideas. This adaptability makes them suitable 
for a wide range of AI applications, from language models to knowledge 
representation systems. Prototypes go beyond simple data containers, 
functioning as flexible building blocks that can encapsulate diverse forms of 
information.

•	 Tokenization and Granularity: Similar to the way tokenization works in LLMs, 
Prototypes share commonalities with how language is broken down into 
tokens. However, they offer more flexibility in descending natively to sub-word 
or multi-word tokens. This means Prototypes can represent granular pieces of 
information—down to individual sub-word components or extended multi-word 
phrases—allowing for more refined and context-aware data processing.

•	 Contextual Awareness: Due to their flexible structure and integration with 
systems like Buffaly, Prototypes can evolve dynamically as they receive 
more context. This capability, combined with type mutability, enables them 
to change their structure and meaning based on incoming data or updated 
relationships. As a result, Prototypes support a more contextual and evolving 
understanding of data.

Relationships and Type Mutability

Prototypes can express relationships through inheritance (“is-a” relationships) and 
property references. They support multiple inheritance, and type mutability allows 
prototypes to dynamically change type during runtime based on context. For instance, 
“Buffalo” can initially be a generic prototype, later classified as City, Animal, or Action 
depending on context.

Representing Meaning

Prototypes implement sememes and map them to lexemes. For example, “buffalo” could 
represent BuffaloCity, BuffaloAnimal, or BuffaloAction. This structure allows Buffaly to 
disambiguate meanings in context.

Extending Functionality

ProtoScript allows prototypes to have member functions, extending their capabilities. 
These functions can handle:

•	 Categorization: Classifying prototypes into specific categories.
•	 Transformation: Modifying prototype structure or properties.



•	 Other Operations: Supporting complex reasoning and interactions.

Example Scenario

In a CRM system, the ontology could have prototypes for “Lead,” “Account,” and 
“Interaction.” These prototypes can represent properties like “Name,” “Company,” 
and “Status,” allowing Buffaly to answer complex queries such as “show all leads from 
healthcare companies with pending appointments.” The ontology processes this query 
through graph operations, retrieving the relevant prototypes based on their properties.



Analyzing Type Mutability in Buffaly’s 
Ontology
Type mutability in Buffaly aligns with the principles of a sense enumeration lexicon 
rather than thin semantics. Here’s why:

•	 Explicit Representation of Senses: Buffaly explicitly represents multiple senses 
for words, such as “BuffaloCity,” “BuffaloAnimal,” and “BuffaloAction.” 

•	 Contextual Disambiguation: Buffaly determines the appropriate meaning of a 
word based on context. 

•	 Dynamic Type Assignment: Prototypes dynamically change type as more 
information becomes available.

Distinguishing from Thin Semantics

Buffaly’s system is not confined to a fixed set of categories, supporting dynamic type 
assignment as needed. This flexibility goes beyond thin semantics, aligning more closely 
with sense enumeration.

Buffaly’s type mutability approach facilitates a nuanced understanding of language, 
handling polysemy and ambiguity effectively by dynamically adjusting the type of a 
prototype based on context. This provides a richer semantic representation and deeper 
language comprehension.



Polysemy, Homonymy, and Prototypes in 
Buffaly
Buffaly, a prototype-based ontology system, addresses the challenges of homonymy 
(words with multiple unrelated meanings) by creating separate prototypes for each 
distinct sememe. For polysemy (words with multiple related meanings), Buffaly uses 
more flexible constructs, such as multiple inheritance, properties, and transformations, 
to capture the nuanced meanings that arise in different contexts while maintaining the 
underlying relationships between them.

Distinct Prototypes for Homonyms

For homonymous words, Buffaly represents each meaning with a unique prototype (or 
sememe). This ensures clear distinctions between unrelated meanings. For example, the 
word “buffalo” could refer to an animal, a city, or an action, and each of these distinct 
meanings is mapped to a separate prototype in ProtoScript, Buffaly’s programming 
language:

protoscript

[Lexeme.SingularPlural(“buffalo”, “buffaloes”)]
prototype BuffaloAnimal : Animal;

[Lexeme.Singular(“buffalo”)]
prototype BuffaloCity : City;

[Lexeme.Singular(“buffalo”)]
prototype BuffaloAction : Action;

This approach provides an explicit separation of homonymous meanings, treating 
each as a distinct entity within the ontology. Each meaning is represented by its own 
prototype, ensuring no confusion between unrelated senses.

Handling Polysemy with Multiple Inheritance, Properties, and 
Transformations

For polysemous words, Buffaly uses constructs like multiple inheritance, properties, 
and transformations rather than creating separate prototypes for each meaning. 
Polysemous words often have meanings that are related, and Buffaly captures these 



relationships through shared properties or behaviors.

For example, the word “bank” (as in a financial institution) and “bank” (as in the 
side of a river) share commonalities but differ in specific attributes. In Buffaly, both 
meanings might share a common prototype but diverge through different properties or 
transformations. Instead of creating separate prototypes for each sense, Buffaly uses 
inheritance to define the core shared attributes and then differentiates the specific 
contexts using additional properties or behaviors.

prototype RiverBank : Location {
}

prototype FinancialBank : Location {
}

This allows Buffaly to maintain the underlying relationship between related meanings 
while providing enough flexibility to handle their distinct contexts.

Contextual Disambiguation and Type Mutability

Buffaly’s system supports type mutability, allowing prototypes to change their type 
based on contextual clues. This dynamic adjustment is crucial for resolving polysemy 
and homonymy in real-time language processing. For instance, the system might initially 
identify “bank” in a sentence, but as more information becomes available, Buffaly can 
dynamically assign it the correct type—”RiverBank” or “FinancialBank”—depending on 
the context.

The system’s deterministic tagger uses heuristics, training data, and context to select 
the most appropriate interpretation of a word. This dynamic type assignment ensures 
that Buffaly accurately captures the meaning as the surrounding language evolves.

Advantages of Buffaly’s Approach

Buffaly’s strategy for handling polysemy and homonymy offers several key advantages:

•	 Explicit Representation for Homonyms: Buffaly clearly separates unrelated 
meanings of homonyms by creating distinct prototypes for each sememe, 
reducing ambiguity.



•	 Flexible Representation for Polysemes: Instead of rigidly splitting related 
meanings, Buffaly uses multiple inheritance and properties to capture 
the subtle distinctions between related meanings, ensuring flexibility in 
understanding context-specific nuances. 

•	 Dynamic Meaning Assignment: Through type mutability, Buffaly can adjust 
meaning dynamically as more contextual information is processed, improving 
accuracy in real-world scenarios.

Integration with LLMs

Combining Buffaly with Large Language Models (LLMs) can address some of its 
limitations. LLMs excel at understanding language complexity and can assist Buffaly in 
generating new prototypes or refining existing ones based on new data. This integration 
can enhance Buffaly’s ability to handle complex language processing tasks, particularly 
with polysemous and homonymous words.



Enhancing Graphs with Functions in 
ProtoScript
ProtoScript, a C#-based programming language designed for building ontologies 
and AI systems, extends the concept of graphs beyond static data representation by 
embedding functions directly within the graph structure. This innovative approach 
allows ProtoScript to offer enhanced expressiveness, flexibility, and learning capabilities 
for graph-based systems.

Functions as Integral Graph Components

In ProtoScript, functions are treated as first-class entities within the graph, allowing them 
to be directly associated with specific prototypes. Unlike traditional graph databases 
that rely on external query languages or separate processing engines for functional 
operations, ProtoScript embeds functions within the graph itself. This seamless 
integration enables more complex interactions within the graph and allows for dynamic 
behaviors to be encoded alongside the data.

Advantages of Functional Integration

•	 Increased Expressiveness: By embedding functions, ProtoScript can represent 
and manipulate more intricate relationships and operations. For example, a 
prototype representing a “SalesLead” can include a function that calculates the 
“Lead Score” based on attributes such as engagement or recent activity. This 
function is stored directly within the graph, ensuring that both data and logic 
are interconnected, leading to richer semantic modeling. 

•	 Enhanced Flexibility: ProtoScript allows functions to be triggered dynamically 
based on specific conditions or events. This enables the graph to respond to 
changes in data or user input in real time, creating more adaptive and context-
aware systems. For example, functions can adjust a prototype’s properties or 
relationships based on new information, making the system highly responsive 
to evolving data. 

•	 Simplified Learning and Manipulation: The integration of functions simplifies 
the process of learning from and transforming graph structures. Functions 
in ProtoScript can be used for tasks such as graph transformation, learning 
graph abstractions, or performing advanced operations like graph completion. 



This tight coupling between graph data and functional logic makes graph 
manipulation more intuitive and powerful.

Examples of Functional Integration

Several examples illustrate how functions enhance ProtoScript’s graph structures:

•	 Type Mutability: ProtoScript enables dynamic type changes for prototypes at 
runtime using functions. For instance, an untyped “Buffalo” prototype can be 
assigned a specific type such as “BuffaloAnimal” by invoking a function which 
adjusts the type based on contextual information. 

•	 Dynamic Property Addition: Functions allow new properties to be added 
to prototypes without altering their original definition. This enables flexible, 
evolving data structures that can adapt to new requirements or data over time. 

•	 Subtype Definition with Functions: ProtoScript uses functions to 
define subtypes based on specific criteria. For example, a subtype like 
“CityInNewYork” can be dynamically defined for cities whose location property 
equals “NewYorkState” using a function that performs categorization or filtering 
based on property values.

ProtoScript’s integration of functions into graph structures marks a significant leap in 
graph-based knowledge representation. By embedding functions directly into the graph, 
ProtoScript transforms graphs from static data models into dynamic, interactive systems. 
This allows for more expressive and flexible AI applications, enabling systems to learn, 
adapt, and reason in ways that static data alone cannot support. Functions within the 
graph allow for real-time adaptation, making ProtoScript a powerful tool for building 
intelligent, responsive AI systems.



Buffaly’s Language Model: A Hybrid 
Approach
Buffaly’s language model is a hybrid system that merges elements of traditional 
symbolic AI, such as prototypes and deterministic tagging, with the advanced 
capabilities of modern Large Language Models (LLMs). This approach leverages the 
strengths of both paradigms while addressing their individual limitations, offering a 
powerful and flexible solution for complex AI tasks.

Key Components

Several key components define Buffaly’s language model:

•	 Prototypes: Prototypes are data structures in ProtoScript (a C#-based 
language) that represent concepts and their relationships. They provide an 
explicit way to represent semantic information. For example, the word “lead” 
could have different prototypes representing its various meanings, such as 
“Lead (a person)” or “Lead (a material).” 

•	 Lexemes and Sememes: A lexeme refers to a basic lexical unit like a word 
or phrase, while a sememe represents its underlying meaning. Buffaly maps 
lexemes to sememes using ProtoScript annotations. For instance, “buffalo” 
can map to different sememes like “BuffaloAnimal,” “BuffaloCity,” and 
“BuffaloAction,” each representing a distinct meaning. 

•	 Sequences: Buffaly defines sequences of prototypes using grammatical rules 
and semantic relationships. These sequences, similar to Chomsky grammars, 
guide the interpretation of natural language input. For example, Buffaly could 
recognize sequences like “City Animal” or “Animal Action” to understand 
language structure. 

•	 Deterministic Tagger: Buffaly’s deterministic tagger is a rule-based system that 
parses unstructured text into a graph structure. It applies heuristics and past 
training data to identify lexemes, hypothesize sememes, and match sequences, 
creating a semantic representation of the input. 

•	 LLM Integration: Buffaly enhances its capabilities by integrating LLMs like 
ChatGPT or Gemini, which assist in disambiguating complex language and 
providing deeper contextual understanding. The LLMs aid the deterministic 



tagger by analyzing text, identifying entities, and refining interpretation 
probabilities.

How It Works

Buffaly’s language model operates through tokenization, hypothesis generation, 
sequence matching, and graph transformation:

1.	 Tokenization: The input text is broken down into lexemes (words or phrases).
2.	 Hypothesize a Sememe: The deterministic tagger proposes possible sememes 

(meanings) for each lexeme using heuristics.
3.	 Sequence Matching: The tagger searches for matching sequences of 

prototypes based on grammatical and semantic expectations.
4.	 Collapsing to Interpretation: When a sequence matches, the lexemes collapse 

into sememes, confirming their interpretation.
5.	 Graph Transformation: As Buffaly processes sequences, it constructs a graph 

that represents the meaning of the input text and the relationships between 
concepts.

This iterative process builds a semantic graph, which serves as a structured 
representation of the input.

Going Beyond Traditional Approaches

Buffaly’s language model surpasses traditional methods of part-of-speech tagging and 
basic semantic networks through:

•	 Functions within Graphs: ProtoScript allows Buffaly to embed functions 
directly into graph structures. These functions enable dynamic calculations, 
context-aware behaviors, and complex relationship modeling, enriching the 
system’s expressiveness. 

•	 LLM Integration: LLMs improve Buffaly’s ability to resolve ambiguity and handle 
complex language, providing more context and depth to the interpretation 
process. 

•	 Domain-Specificity: Buffaly’s architecture is tailored for specific domains, 
enabling it to offer more efficient and accurate language understanding for 
targeted use cases.



Strengths and Potential

Buffaly’s hybrid approach offers notable strengths:

•	 Controllability and Transparency: By explicitly representing knowledge 
through prototypes and rules, Buffaly provides greater transparency and 
control than typical black-box LLMs. 

•	 Efficiency and Scalability: Buffaly’s deterministic tagging and domain-focused 
design enable more efficient processing, making it scalable for large datasets. 

•	 Explainability: The structured nature of prototypes allows for clear explanations 
of the system’s decision-making process, improving trust and interpretability. 

•	 Incremental Learning: Buffaly has the potential for incremental learning 
through adjustments to its prototypes and rules, enhancing its adaptability over 
time.



Buffaly and LLMs: A Symbiotic Relationship
Buffaly’s Standalone Capabilities and Weaknesses

Buffaly excels in representing and manipulating knowledge in a graph-based format 
using prototypes, which are defined programmatically in ProtoScript. These prototypes 
can represent various types of information, such as:

•	 Facts: For instance, Buffaly can store simple assertions like “Barack Obama 
was President.” 

•	 Code: Buffaly is capable of representing and manipulating code structures, 
showing potential for code generation tasks. 

•	 Relationships: Buffaly captures complex relationships between entities, such 
as those found in CRM systems, by modeling interactions between leads, 
accounts, and data points.

Weaknesses:

•	 Parsing Limitations: Buffaly relies on predefined rules and structures for 
parsing language, struggling with complex sentences, ambiguous phrases, and 
nuanced language, which may require manual intervention. 

•	 Scalability Challenges: As the complexity of Buffaly’s ontology increases, 
managing and processing large graphs can become computationally 
expensive.

LLMs: Strengths and Limitations

LLMs excel at understanding complex language and processing vast datasets, with 
strengths such as:

•	 Broad Learning: LLMs are trained on massive datasets, allowing them to 
understand a wide range of concepts and handle complex sentence structures 
effectively. 

•	 Generalization: LLMs can generalize across different domains and adapt to a 
variety of tasks, even those they weren’t explicitly trained for. 
 



Weaknesses:

•	 Lack of Transparency: LLMs function as black boxes, making it difficult to 
understand how they reach certain conclusions, which poses challenges for 
debugging and reliability. 

•	 Hallucinations and Bias: LLMs are prone to generating incorrect information 
(hallucinations) and may reflect biases in their training data, which impacts their 
trustworthiness. 

•	 Limited Actionability: LLMs are excellent at language generation but cannot 
directly execute tasks or interact with external systems without integration.

Synergistic Integration: Buffaly + LLMs

The combination of Buffaly and LLMs forms a symbiotic relationship that maximizes the 
strengths of both systems:

•	 Enhanced Parsing and Understanding: LLMs can handle the complexity and 
ambiguity of language, simplifying Buffaly’s parsing tasks and reducing its 
reliance on manual intervention. 

•	 Improved Learning and Adaptability: LLMs can help Buffaly identify areas 
where its ontology needs improvement and can assist in generating or refining 
prototypes based on new data. 

•	 Actionability and Control: Buffaly’s graph structure translates LLM-generated 
insights into executable actions, making the system capable of interacting with 
external systems and performing tasks.

Examples of Synergistic Interactions

•	 RAG-SQL (Retrieval Augmented Generation for SQL): LLMs help Buffaly 
interpret user queries and convert them into structured representations, which 
Buffaly then uses to generate precise SQL queries. 

•	 Automated CRM Agent: Buffaly uses LLMs to understand customer 
interactions, triggering appropriate actions like appointment scheduling or 
customer follow-ups within the CRM system. 
 



•	 SemDB (Semantic Database): LLMs analyze and categorize unstructured text 
data, enriching Buffaly’s semantic representations and improving search and 
analysis capabilities.

By integrating Buffaly’s structured knowledge representation with LLMs’ advanced 
language processing, this hybrid system offers a powerful, adaptable, and transparent 
solution for AI tasks. This collaboration between Buffaly and LLMs paves the way for AI 
systems that can better understand, interact with, and impact the world around them.



Buf﻿faly Compared to Other Approaches

Buf﻿faly vs. Knowledge Graphs: A Comparative Analysis

While both Buffaly and knowledge graphs utilize graph structures to represent and 
process information, they differ significantly in their capabilities and approaches.

Knowledge graphs primarily focus on representing factual knowledge in a structured 
format, typically using triples to connect entities and their relationships. For example, 
a knowledge graph might contain facts like “Thomas is a train” or “Thomas has wheels,” 
representing these relationships in a graph structure.

Buffaly, on the other hand, aims to move beyond simple fact representation and into 
the realm of learning, reasoning, and action execution. It uses a more flexible graph-
based data structure and a scripting language called ProtoScript to represent not just 
factual knowledge, but also procedural knowledge and more complex relationships, 
such as hypothetical scenarios, cause and effect, and temporal relationships. This 
enables Buffaly to capture a broader range of information and to reason about those 
relationships in a more sophisticated way.

Furthermore, Buffaly’s learning capabilities distinguish it from traditional knowledge 
graphs. Buffaly has the ability to learn from few examples, to learn incrementally, and to 
adapt to new information without the need for massive datasets or extensive retraining. 
This flexibility in learning makes Buffaly more suitable for dynamic environments and 
tasks that require adaptability and continuous learning.

Here’s a more detailed breakdown of the key differences:

Knowledge Graphs:

•	 Focus: Representing factual knowledge.
•	 Structure: Typically use triples (subject-predicate-object) to represent 

relationships.
•	 Learning: Limited learning capabilities; often rely on manual curation or rule-

based systems.
•	 Reasoning: Basic reasoning based on defined relationships and inference 

rules.
•	 Action Execution: Generally not designed for action execution; focus on 

knowledge representation and retrieval.



Buffaly:

•	 Focus: Learning, reasoning, and action execution, in addition to knowledge 
representation.

•	 Structure: Uses a more flexible graph-based data structure with various node 
types and relationships, represented in ProtoScript.

•	 Learning: Capable of learning from few examples, incremental learning, and 
adaptation to new information.

•	 Reasoning: More sophisticated reasoning capabilities, including handling 
hypothetical scenarios, cause and effect, and temporal relationships.

•	 Action Execution: Designed for action execution by translating LLM-generated 
plans into executable actions.

In essence, while knowledge graphs excel at storing and retrieving factual 
information, Buffaly takes a more holistic approach, aiming to bridge the gap 
between language, knowledge, and action. By leveraging its flexible graph structure, 
learning capabilities, and action execution framework, Buffaly seeks to enable the 
development of more intelligent and adaptable AI systems that can effectively interact 
with and reason about the real world.



Buffaly Compared to Abstract Meaning 
Representation and Semantic Networks

Buffaly, Abstract Meaning Representation (AMR), and semantic networks all 
represent knowledge using graph structures, yet they differ in their objectives, levels 
of abstraction, and methods of learning and reasoning.

Buffaly

Buffaly focuses on connecting language comprehension with action execution. This 
system aims to translate the output of Large Language Models (LLMs) into real-world 
actions using a combination of graph-based data structures, a scripting language called 
ProtoScript, and learning algorithms. Buffaly prioritizes transparency and controllability, 
offering a more interpretable and manageable approach compared to the black-box 
nature of neural networks.

Abstract Meaning Representation

Abstract Meaning Representation (AMR) is a graph-based formalism for representing 
the semantic structure of sentences, focusing on capturing the core meaning of a 
sentence in a way that is independent of specific languages or syntactic variations. AMR 
graphs typically use nodes to represent concepts and edges to represent semantic 
roles or relationships between those concepts.

Some parallels can be drawn between Buffaly and AMR:

•	 Graph-Based Representation: Both Buffaly and AMR employ graph structures 
to represent knowledge, emphasizing the relationships between concepts.

•	 Semantic Focus: Both systems strive to capture the meaning behind language, 
going beyond surface-level syntax.

However, key differences exist in their scope and objectives:

•	 Action Execution: Buffaly explicitly aims to bridge the gap between language 
and action, while AMR primarily focuses on semantic representation.

•	 Learning and Reasoning: Buffaly has learning capabilities, whereas AMR 
typically relies on manual annotation or rule-based systems for graph 
construction.



Semantic Networks

Semantic networks represent knowledge as a network of interconnected concepts, 
with links representing relationships between those concepts. These networks can 
vary in their complexity and levels of abstraction, ranging from simple hierarchical 
structures to more intricate graphs with multiple types of nodes and relationships.

Buffaly shares some commonalities with semantic networks:

•	 Graph-Based Knowledge Representation: Both systems use graphs to 
structure and organize knowledge, emphasizing the connections between 
concepts.

•	 Semantic Relationships: Both approaches represent relationships between 
concepts, enabling reasoning and inference based on those connections.

However, Buffaly distinguishes itself from traditional semantic networks in several 
ways:

•	 Focus on Action: Buffaly’s primary objective is to enable action execution, 
while semantic networks typically focus on knowledge representation and 
reasoning.

•	 Learning Capabilities: Buffaly incorporates learning algorithms to adapt its 
knowledge base, while many semantic networks rely on manual curation or 
rule-based systems.

Integration with LLMs: Buffaly is specifically designed to interface with LLMs, translating 
their output into actionable commands, a feature not typically found in traditional 
semantic networks.



Rooted Graphs, Leaf-Based Transforms, 
and Connections to Masked Language 
Modeling and Graph Theory in Buffaly
Buffaly is a graph-based learning system that utilizes rooted graphs and leaf-based 
transforms, integrating concepts from masked language modeling and graph theory to 
build more adaptive AI systems.

Rooted Graphs in Buffaly

Buffaly uses rooted graphs as a core structure for representing information and 
facilitating learning. In a rooted graph, there is a designated root node, often 
representing the primary subject or concept being analyzed. From this root, the graph 
branches out to capture the relationships and properties associated with the concept.

Rooted graphs are structured differently depending on the task. For example, when 
handling sequences, the root might represent the source sequence, with child nodes 
encoding elements or transformations applied to that sequence. In language processing 
tasks, the root could represent a sentence, while the child nodes represent words, 
phrases, or their semantic interpretations.

This use of rooted graphs provides several key advantages:

•	 Reduced Search Space: By focusing on a designated root, the system can limit 
its search, enabling more efficient processing and analysis. 

•	 Structure for Transformation: The hierarchical nature of rooted graphs 
provides a clear framework for applying transforms, capturing new information 
or relationships as the graph evolves. 

•	 Representation of Context: Rooted graphs effectively encapsulate contextual 
information relevant to a concept or sequence, aiding in more sophisticated 
reasoning and understanding.

Leaf-Based Transforms

Leaf-based transforms are essential to Buffaly’s ability to generalize from examples and 
enable incremental learning. These transforms operate specifically on the leaf nodes of 
a graph, which represent the most detailed elements of the data.



Leaf-based transforms leverage the concept of “shadows,” generated by comparing 
two graphs to identify similarities and differences. By focusing on shared patterns or 
structures at the leaf level, Buffaly can extract reusable components or sub-graphs, 
allowing the system to:

•	 Transfer Learn: Leaf-based matching allows Buffaly to transfer knowledge 
between examples. For instance, if it learns to translate “show me all patients” 
into a specific SQL query, it can apply this knowledge to a similar request like 
“show me all leads.” 

•	 Escape the Curse of Dimensionality: Identifying and reusing common sub-
graphs allows Buffaly to generalize from fewer examples, reducing the number 
of explicit examples required for training. 

•	 Mimic Masked Language Modeling: This process of identifying and utilizing 
common sub-graphs mirrors masked language modeling, where systems learn 
to predict missing words based on surrounding context.

Relationship to Masked Language Modeling

Masked language modeling, a technique widely used in large language models (LLMs), 
shares conceptual similarities with Buffaly’s use of leaf-based transforms. Both methods 
involve:

•	 Pattern Recognition: Identifying recurring structures or sequences in the data.
•	 Context-Based Prediction: Using surrounding information to predict missing or 

hidden elements.
•	 Generalization: Applying learned patterns to new data or scenarios.

While masked language modeling typically works with linear sequences of tokens, 
Buffaly applies these principles to graph structures, potentially offering advantages in 
representing complex relationships and enhancing explainability.

Connections to Broader Graph Theory

Buffaly’s use of graphs and graph-based operations aligns with broader trends in AI 
development, particularly in:

•	 Geometric Deep Learning: Extending deep learning techniques to non-
Euclidean data, such as graphs and manifolds. 



•	 Graph Neural Networks: Neural networks designed to work with graph-
structured data, performing tasks such as node classification, link prediction, 
and graph generation. 

•	 Knowledge Representation and Reasoning: Graphs provide a flexible and 
natural framework for representing knowledge and implementing reasoning 
algorithms.

By explicitly representing knowledge through graphs, Buffaly promotes greater control, 
transparency, and explainability than models that rely solely on implicit representations 
within neural networks.

Buffaly’s use of rooted graphs and leaf-based transforms demonstrates the potential 
for graph-based learning systems to address key challenges in AI. By combining these 
techniques with explicit knowledge representation and LLM integration, Buffaly provides 
a promising foundation for building AI systems that are more controllable, transparent, 
and efficient.



Conclusion: The Promise and Potential of 
Buffaly in Shaping the Future of AI
This white paper has explored the critical challenge of bridging the gap between the 
language proficiency of large language models (LLMs) and their ability to take concrete 
actions in the real world. While LLMs exhibit remarkable capabilities in understanding 
and generating human-like text, their abstract nature and lack of grounding in real-world 
contexts hinder their practical application in domains that require action execution and 
dynamic decision-making. Buffaly emerges as a potential solution to this challenge, 
providing a framework for controlling LLM behavior and seamlessly integrating them 
with action-oriented systems.

Buffaly’s innovative framework enables LLMs to interact effectively with action-oriented 
systems by grounding language in real-world contexts, ensuring that generated actions 
are feasible, safe, and adaptable. Through its integration with real-time information 
sources, Buffaly enhances LLM capabilities, allowing them to make dynamic decisions 
and execute actions that align with user goals and environmental constraints. 
Furthermore, Buffaly’s focus on transparency, control, and real-time adaptability sets it 
apart from traditional AI approaches, providing developers with the tools to refine, audit, 
and govern LLM outputs in a reliable way.

Concrete examples of Buffaly’s potential in real-world applications include automated 
business processes, RAG-SQL, and RAG-CRM. These examples demonstrate the 
versatility of Buffaly’s approach in enabling LLMs to interact with and control various 
systems, extending their capabilities beyond language processing into the realm of 
practical action execution.

Furthermore, Buffaly’s focus on transparency and controllability sets it apart from 
traditional black-box AI systems. By providing a structured ontology and a human-
readable scripting language, Buffaly allows developers to understand and manage the 
reasoning processes of LLMs, ensuring that their actions align with intended goals and 
ethical considerations. This emphasis on transparency and control is crucial in fostering 
trust and accountability in AI systems, addressing concerns about the potential risks 
associated with uncontrolled LLM behavior.

The development of Buffaly represents a significant step forward in realizing the full 
potential of LLMs for practical applications. By bridging the gap between language 
and action, Buffaly paves the way for a new generation of AI systems that can not 



only understand and generate human-like text but also interact with the real world in 
a meaningful and impactful way. As research and development in this field continue, 
Buffaly holds the promise of transforming industries, streamlining processes, and 
ultimately enhancing human capabilities through the power of controlled and actionable 
AI.


